Using expert opinion to quantify unmeasured confounding bias parameters
نویسندگان
چکیده
منابع مشابه
The sign of the bias of unmeasured confounding.
Unmeasured confounding variables are a common problem in drawing causal inferences in observational studies. A theorem is given which in certain circumstances allows the researcher to draw conclusions about the sign of the bias of unmeasured confounding. Specifically, it is possible to determine the sign of the bias when monotonicity relationships hold between the unmeasured confounding variabl...
متن کاملHierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding.
Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured confounding. A challenge with existing methods is that the user is often required to elicit prior distributions for high-dimensional parameters that model competing bias scenarios. This can render the methods unwieldy. In this paper, we propose a novel methodology to adjust for unmeasured confounding that...
متن کاملUsing an instrumental variable to test for unmeasured confounding.
An important concern in an observational study is whether or not there is unmeasured confounding, that is, unmeasured ways in which the treatment and control groups differ before treatment, which affect the outcome. We develop a test of whether there is unmeasured confounding when an instrumental variable (IV) is available. An IV is a variable that is independent of the unmeasured confounding a...
متن کاملSensitivity analysis for interactions under unmeasured confounding.
We develop a sensitivity analysis technique to assess the sensitivity of interaction analyses to unmeasured confounding. We give bias formulas for sensitivity analysis for interaction under unmeasured confounding on both additive and multiplicative scales. We provide simplified formulas in the case in which either one of the two factors does not interact with the unmeasured confounder in its ef...
متن کاملA flexible, interpretable framework for assessing sensitivity to unmeasured confounding
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Public Health
سال: 2016
ISSN: 0008-4263,1920-7476
DOI: 10.17269/cjph.107.5240